Что такое фрактал
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.
Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:
- Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.
- Является самоподобным или приближённо самоподобным. Любой микроскопический фрагмент фрактала в том или ином отношении воспроизводит его глобальную структуру. В простейшем случае часть фрактала представляет собой просто уменьшенный целый фрактал.
- Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую размерность.
Многие объекты в природе обладают свойствами фрактала. Природные объекты (квазифракталы) отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Все встречающиемя в природе фракталоподобные структуры являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул.
В живой природе:
- Кораллы
- Морские звезды и ежи
- Морские раковины
- Цветы и растения (брокколи, капуста)
- Кроны деревьев и листья растений
- Плоды (ананас)
- Система кровообращения и бронхи людей и животных
Кактус
В неживой природе:
- Границы географических объектов (стран, областей, городов)
- Береговые линии
- Горные хребты
- Снежинки
- Облака
- Молнии
- Морозные узоры на оконных стёклах
- Кристаллы
- Сталактиты, сталагмиты, геликтиты.
Снежинки. Макросъемка.
С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон (Lewis Fry Richardson) — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона (Richardson effect).
В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими.
Фракталы делятся на группы. Самые большие группы это:
- геометрические фракталы;
- алгебраические фракталы;
- стохастические фракталы;
- системы итерируемых функций.
Геометрические фракталы
Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.
Геометрические фракталы: Снежинка Коха, Дерево Пифагора, Треугольник Серпинского.
Алгебраические фракталы
Вторая большая группа фракталов - алгебраические. Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Методов получения алгебраических фракталов несколько. Один из методов представляет собой многократный (итерационный) расчет функции $Z_{n+1}=f(Z_n)$, где Z - комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка. При этом значения функции для разных точек комплексной плоскости может иметь разное поведение:
- С течением времени стремится к бесконечности.
- Стремится к 0.
- Принимает несколько фиксированных значений и не выходит за их пределы.
- Поведение хаотично, без каких либо тенденций.
Алгебраический фрактал: множество Мандельброта.
Стохастические фракталы
Типичный представитель данного класса фракталов "Плазма". Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок.
Стохастический фрактал: плазма.
Если мы теперь скажем, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру и пожалуйста фотореалистичные горы готовы.
Системы итерируемых функций
Метод "Систем Итерируемых Функций" (Iterated Functions System - IFS) появился в середине 80-х годов как простое средство получения фрактальных структур. IFS представляет собой систему функций из некоторого фиксированного класса функций, отображающих одно многомерное множество на другое. Наиболее простая IFS состоит из аффинных преобразований.
В 1988 году известные американские специалисты в теории динамических систем и эргодической теории Барнсли и Слоан предложили некоторые идеи, основанные на соображениях теории динамических систем, для сжатия и хранения графической информации. Они назвали свой метод методом фрактального сжатия информации. Происхождение названия связано с тем, что геометрические образы, возникающие в этом методе, обычно имеют фрактальную природу в смысле Мандельброта.
Подход на основе систем итерированных функций предоставляет хорошую теоретическую базу для математического исследования многих классических фракталов, а также их обобщений. Разработанная теория непосредственно используется при переходе к исследованию хаоса, связанного с фракталами.
Следует иметь в виду с самого начала, что результат применения системы итерированных функций, называемый аттрактором, не всегда является фракталом. Это может быть любой компакт, включая интервал или квадрат. Тем не менее, изучение систем итерированных функций важно для фрактальной теории, так как с их помощью можно получить удивительное множество фракталов. Теория итерированных функций замечательна сама по себе и служит составной частью общей теории динамических систем, важного раздела математики.
Аттрактор Лоренца